Коэффициент Шарпа — что это такое

Рейтинг брокеров бинарных опционов за 2020 год:

Оценка торговой стратегии с помощью коэффициента Шарпа

Большинство инвесторов оценивают эффективность торговых стратегий на финансовых рынка по эквити. Если по результатам бэктеста кривая плавно растущая, без резких просадок — торговая стратегия эффективная. Есть и другие вспомогательные параметры: процент прибыльных сделок, максимальная просадка, и т.д. Но есть в такой оценке один изъян — она не достаточно учитывает торговые риски. Другими словами, иной раз стратегия с меньшей доходностью является более привлекательной за счет уменьшенного риска. Вот именно для оценки соотношения прибыльности и риска применяется коэффициент Шарпа, в этой статье поговорим о том, что это такое и как его использовать.

  1. Что такое коэффициент Шарпа
  2. Практический пример расчета эффективности стратегии
  3. Усовершенствованный коэффициент Шарпа

Что такое коэффициент Шарпа

Я веду этот блог уже более 6 лет. Все это время я регулярно публикую отчеты о результатах моих инвестиций. Сейчас публичный инвестпортфель составляет более 1 000 000 рублей.

Специально для читателей я разработал Курс ленивого инвестора, в котором пошагово показал, как наладить порядок в личных финансах и эффективно инвестировать свои сбережения в десятки активов. Рекомендую каждому читателю пройти, как минимум, первую неделю обучения (это бесплатно).

Чем выше прибыль при использовании торговой стратегии, тем выше риск. И в какой-то момент риск получить убыток перевешивает вероятность получения прибыли. Коэффициент Шарпа — это параметр, который показывает насколько доход от стратегии соотносится к потенциальному риску.

Расчет данного коэффициента может одинаково применяться как для оценки стратегии на форекс (ниже приведу пример), так и для оценки отдельно взятого инвестиционного портфеля (полезный коэффициент для тех, кто собирается стать инвестором ПИФов).

Формула расчета коэффициента Шарпа:

rp — доход за фиксированный период (эти данные можно найти в статистике, например, торговой платформы Метатрейдера 4), rf — безрисковый доход, σp — стандартное отклонение. На форексе стандартное отклонение определяется средней волатильностью валютной пары.

Параметр rf Коэффициента Шарпа на форексе отсутствует (принимается за 0), на фондовом рынке в качестве значения принимается доходность, например, казначейских краткосрочных векселей. Кстати, я немного не согласен с тем, что для Форекса этот параметр отсутствует. Безрисковый доход — это минимальный доход, который инвестор мог бы получить от инвестиции с практически нулевым риском, и исключение этого параметра искусственно завышает значение коэффициента Шарпа. Я бы советовал в качестве безрискового дохода брать, например, доходность по депозитам.

ЦБ РФ аннулировал лицензии Форекс клуба, Телетрейда и Альпари

Список русских брокеров:

Почему Альпари, Форекс-клуб и Телетрейд потеряли лицензию ЦБ

Какой должен быть коэффициент Шарпа:

  • «1 и выше» — оптимальное значение коэффициента, обозначающее хорошую стратегию или высокую результативность управления портфелем ценных бумаг;
  • «0-1» — нельзя сказать, что стратегия очень хорошая, поскольку завышены риски, но её применение возможно;
  • «0 и ниже» — на форексе стратегию лучше не использовать, при фондовом инвестировании целесообразнее выбрать другой портфель.

Практический пример расчета эффективности стратегии

Пример сравнения двух стратегий при торговле у брокера Амаркетс :

  • начальный депозит — 100 дол. США;
  • период торговли — 1 год;
  • доходность за год — 250% (250 дол. США);
  • волатильность валютной пары за год (разница между начальным и конечным значением котировок) — 125 пунктов.

Коэффициент Шарпа = 250/125 = 2,0.

  • начальный депозит — 500 дол. США;
  • период торговли — 1 год;
  • доходность — 60% (300 дол. США);
  • волатильность — 1345 пунктов.

Коэффициент Шарпа = 300/1345 = 0,22.

В первом случае при такой волатильности трейдер получил слишком большой доход. Следовательно, или нужно искать подвох, или трейдеру очень повезло. Во втором случае трейдер слишком рискует. Снова акцентирую внимание на том, что оптимальным считается значение «1» с минимальными от него отклонениями.

Если с валютным рынком все относительно просто, то с фондовым — сложнее из-за большого количества ценных бумаг и инвестиционных портфелей. У трейдера есть два варианта:

  • рассчитать коэффициент Шарпа в Exel. Для этого берем котировки нужных ценных бумаг, оцениваем вес их доли в портфеле ценных бумаг, рассчитываем доходность по каждой ценной бумаге (формула, например, для «Газпрома» из примера ниже — =LN (B7/B6). Следующий шаг — расчет доходности портфеля и его риска.

Как видно по результатам, коэффициент Шарпа отрицательный, значит портфель нерезультативен и доходность по безрисковому активу (в данном примере депозиты со ставкой 12%) оказалась выше.

  • посмотреть коэффициент Шарпа онлайн, например, на сайте Национальной Лиги Управляющих (nlu.ru).

Банковский Форекс от NPBFX: обзор и отзывы трейдеров

Отзывы о брокере NPBFX Нефтепромбанка

Усовершенствованный коэффициент Шарпа

Выше речь шла о простом коэффициенте Шарпа, а любая упрощенная формула несовершенна. Потому существующая формула была усложнена с целью сделать расчет рисков еще более точным. Сразу предупрежу: её понимание требует знаний математической статистики и рекомендуется только в случае необходимости принятия стратегически важных решений в отношении оценки портфеля ценных бумаг (к форексу данная формула не применяется). Расчет риска в формуле основывается не только на стандартном отклонении, но и на видоизмененной мере риска, позволяющей сделать оценку будущих потерь с большей реалистичностью благодаря анализу характера распределения исторической прибыльности.

Формула усовершенствованного коэффициента Шарпа:

rp — усредненная прибыльность портфеля ценных бумаг, rf — усредненная прибыльность безрискового актива, σp — стандартное математическое отклонение прибыльности портфеля ценных бумаг, S — эксцесс распределения доходности, zc — куртозис распределения прибыльностей портфеля, К — квантиль распределения прибыли.

Всем, кому слова «куртозис» и «квантиль» ни о чем не говорят, «Добро пожаловать» в эконометрику и математическую статистику. Глубоко копать в рамках этой статьи не вижу смысла, т.к. большинству будет достаточно общей информации.

Заключение

Надеюсь, у меня получилось объяснить простым языком что это такое коэффициент Шарпа. В идеале рекомендую создать в Экселе собственную модель, построенную на основе коэффициента с учетом вашего личного риск-менеджмента. Если остались вопросы, пишите в комментариях.

Что такое коэффициент Шарпа и что он показывает? Формула расчёта и примеры

Приветствую всех читателей сайта webinvestor.pro! При подборе инструментов для инвестиционного портфеля инвесторы обычно в первую очередь обращают внимание на показатель доходности, что вполне логично. С другой стороны, существует проверенное практикой правило — чем выше доходность, тем выше инвестиционные риски.

В связи с этим возникает вопрос — как отличить действительно качественный прибыльный актив от актива, который приносит высокий доход просто за счёт увеличенных рисков? В этом может помочь коэффициент Шарпа, разработанный лауреатом Нобелевской премии по экономике Уильямом Шарпом.

Коэффициент Шарпа — что это и что показывает? Формула

Доходность и инвестиционные риски обладают положительной корреляцией, то есть они сильно взаимосвязаны. На практике это означает, что измерять их по отдельности не совсем корректно, это по сути ничего не скажет о качестве конкретного инвестиционного инструмента. Именно поэтому существует специальные показатели вроде коэффициента Шарпа, который показывает эффективность инвестиционного актива как соотношение доходности (премии за риск) и рисков (стандартного отклонения).

Пожалуй, это один из самых популярных показателей, которым пользуются финансовые и инвестиционные аналитики. Формула расчёта коэффициента Шарпа довольно простая:

  • S(X) — коэффициент Шарпа.
  • X — выбранный актив.
  • R(X) — доходность инвестиционного актива.
  • Rf— доходность безрискового актива, с которым сравнивается актив X.
  • E(R(X) — Rf) — математическое ожидание.
  • σ(X) — стандартное отклонение доходности актива X.

В числителе формулы выражение R(X) — Rf означает премию за риск — дополнительную доходность, которую получает инвестор, вкладывая деньги в рискованный, а не надежный безрисковый инвестиционный инструмент. Правда, на практике безрисковых активов не существует, поэтому в формуле приходится использовать наиболее приближенные к ним — казначейские облигации или долларовые депозиты в крупных банках.

При одинаковом временном периоде данных (по дням, неделям и т.д.) математическое ожидание превращается в среднее арифметическое, формула коэффициента Шарпа упрощается:

  • avgR (X) — среднеарифметическое значение доходности актива, для которого рассчитывается коэффициент;
  • avgRf— среднеарифметическое значение доходности безрискового актива.

Стандартное отклонение в знаменателе показывает волатильность (изменчивость) доходности инвестиционного актива. Это не совсем мера риска, так как учитываются колебания в обе стороны. Тем не менее, инвесторам намного комфортнее инвестировать в актив, который потихоньку растёт по 1-2% за период, чем в тот, который может с одинаковым шансом принести как +10%, так и -10%.

Сам по себе коэффициент Шарпа не показывает конкретной характеристики инвестиционного актива, так как соотношение доходность/СО — величина безразмерная. Исключение, когда он близок к нулю или отрицательный — это означает, что выбранный актив вообще не стоит рассматривать, он ничем не лучше безрискового варианта.

Удобнее всего использовать коэффициент Шарпа при сравнении двух или больше активов между собой — чем больше коэффициент, тем более эффективным в плане получения прибыли будет актив. При этом его доходность может быть ниже, чем у остальных — но она будет расти намного стабильнее.

Коэффициента Шарпа лучше всего работает на данных, которые нормально распределены. Поэтому он может давать слишком оптимистичные результаты на коротких временных промежутках и для активов, у которых наблюдается не-«нормальная» волатильность доходности — например у банковских депозитов она практически отсутствует, ставка меняется редко.

Анализ инвестиций с помощью коэффициента Шарпа

Брокеры ПАММ-счетов и сервисы копирования сделок обычно игнорируют коэффициент Шарпа. К счастью, есть сервис Investflow, который охватывает большинство вариантов инвестирования на рынке Форекс. Вам нужно просто найти нужный актив и посмотреть значение коэффициента Шарпа для него:

Коэффициент Шарпа для ПАММ-счёта Lucky Pound

Это высокое значение коэффициента, которое говорит о таких вещах:

  • ПАММ-счёт в среднем зарабатывает больше, чем теряет;
  • сравнивая с другими ПАММ-счетами, мы понимаем насколько он хорош;
  • высокий коэффициент Шарпа позволяет смело использовать реинвестиции.

А теперь для примера посмотрим на результаты еще одного интересного ПАММ-счёта — Surest Secure:

Коэффициент Шарпа для ПАММ-счёта Surest Secure

Здесь уже 0.40! При том, что доходность двух ПАММ-счетов отличается незначительно, более высокое значение коэффициента Шарпа говорит о более низкой волатильности (следовательно, и рисках) Surest Secure.

Школа молодого бинарщика:  Розыгрыш поездки на Формулу 1 в Сочи на двоих от FxPro

Есть другой сервис, который специализируется на ПАММ-счетах компании Альпари — Pammin. Он тоже умеет рассчитывать коэффициент Шарпа (и не только):

Если что, это все тот же Surest Secure. Кстати, меня ставит в ступор такое различие в значениях коэффициента на Investflow и на Pammin — вроде бы простая формула, а результаты разные. Вероятно, владельцы сервисов понимают её несколько по-своему.

В общем, приходим к выводу, что если вы хотите использовать коэффициент Шарпа для анализа веб-инвестиций, то используйте только один сервис.

В программе IVE: Анализ ПАММ-счетов тоже используется коэффициент Шарпа:

Чтобы сравнить до конца, снова взял график Surest Secure. Как видите, в моей программе значение коэффициента Шарпа получилось намного ниже — всего 0.09. Для этого есть несколько причин:

  • в качестве доходности актива используется среднее значение дневной чистой доходности инвесторов ПАММ-счёта, комиссия управляющего съедает значительную часть прибыли и снижает значение коэффициента;
  • безрисковая доходность учитывается, по умолчанию 5% годовых — средняя доходность долларовых депозитов в крупных банках СНГ;
  • волатильность считается не по доходности на конец дня, а по минимальному значению общей доходности за день — чтобы учитывать все скрытые просадки, а это в свою очередь увеличивает значение стандартного отклонения и уменьшает значение коэффициента Шарпа.

Несмотря на то, что каждый инструмент считает коэффициент по-своему, судя по всему сравнивать ПАММ-счета можно любым — от использования разных вариантов формулы основной принцип не меняется. Так что выбирайте тот, что вам удобнее.

Коэффициент Шарпа также используется для оценки эффективности торговых советников и ручных торговых систем. Пожалуй, самый популярный сервис для мониторинга и анализа торговых счетов трейдеров рынка Форекс Myfxbook умеет считать нужный нам коэффициент:

Для Myfxbook, по моим наблюдениям, 0.25 — значение очень высокое, так что очевидно, методика расчёта отличается от описанных выше сервисов. Что с этим делать вы уже знаете.

Пример расчёта по формуле коэффициента Шарпа в Excel

Вполне возможна ситуация, когда необходимо проанализировать инвестиционный актив, для которого нигде нет заранее рассчитанного значения коэффициента Шарпа. Вы можете это сделать самостоятельно при помощи программы Microsoft Excel.

Я буду показывать на примере версии MS Excel 2020, установленной у меня, но по идее для других версий отличий нет.

Для примера рассчитаем коэффициент Шарпа для акций замечательной компании Disney. Первым делом скачаем информацию о цене по этой ссылке:

Получили такую таблицу:

Посчитаем коэффициент Шарпа по ценам закрытия биржевого дня, т.е. Close, столбец E. Используем упрощённую формулу:

avgR(X) — средняя доходность акций Disney за день. Доходность мы можем рассчитать начиная со второго дня, для этого используем формулу =(E3-E2)/E2, и протягиваем её на всю длину таблицы:

Находим среднее значение доходности по формуле =СРЗНАЧ(H3:H22):

Получили -0.01%, это средняя доходность акций Disney за один день. Теперь надо добавить в формулу безрисковую доходность Rf — допустим это 5% годовых. Переводим 5% за 365 дней в доходность за 1 день с помощью формулы: =0.05/365, получили avgRf = 0.014%.

Теперь осталось найти стандартное отклонение доходности. Это просто, используем формулу: =СТАНДОТКЛОН(H3:H22), получили 0.57%.

Все части формулы коэффициента Шарпа рассчитаны, осталось вычислить его: =(J2-K2)/L2, получили -0.04. Результат отрицательный, а значит рассматривать акции Disney для инвестирования не стоит. Однако, как я уже писал раньше, на коротких временных промежутках коэффициент Шарпа работает плохо, в идеале рассматриваемый период должен быть не меньше года .

Еще один пример расчёта коэффициента Шарпа для акций с подробными объяснениями вы найдете в этом видео:

Я не просто так решил рассказать вам подробнее о коэффициенте Шарпа — на мой взгляд, это отличный показатель качества инвестиционного актива, который учитывает и доходность и риски. У Форекс-трейдеров примерно для таких же целей используется показатель Прибыль-фактор — он показывает соотношение сумм результатов прибыльных и убыточных сделок.

А вот у инвесторов такого универсального показателя нет. Точнее, не было — я считаю его место вполне может занять коэффициент Шарпа. А как считаете вы? Пишите об этом в комментариях.

И не забывайте нажимать кнопки соцсетей, если вам понравилась статья:

Коэффициент Шарпа (Sharpe Ratio) — это

Коэффициент Шарпа — это показатель эффективности инвестиционного портфеля (актива)

Коэффициент Шарпа показывает эффективность инвестиционного портфеля и расчитывается по формуле

Структура публикации

Коэффициент Шарпа — это, определение

Коэффициент Шарпа — это показатель эффективности инвестиционного портфеля (актива), который вычисляется как отношение средней премии за риск к среднему отклонению портфеля. Другими словами можно сказать, что коэффициент Шарпа — это математическое отношение средней доходности к среднему отклонению этой доходности.

Коэффициент Шарпа — это своего рода показатель эффективности системы. Чем он выше, тем больше система принесёт прибыли. Коэффициент Шарпа редко бывает выше единицы, и случается это, в основном, при определении эффективности в банковской системе. В этом случае система будет показывать отдачу с максимальной прибылью.

Коэффициент Шарпа — это отношение доходность — риск. Данный коэффициент говорит о возможной степени стабильности ожидаемой прибыли.

Коэффициент Шарпа предназначен для того чтобы понять, насколько доходность актива компенсирует риск, принимаемый инвестором. Если сравнивать два актива с одинаковым ожидаемым доходом, то вложение в актив с более высоким коэффициентом Шарпа будет менее рискованным.

Варианты расчёта коэффициента Шарпа

Есть много вариантов расчета коэффициента Шарпа, но все они основаны на одной и той же идее:

Коэффициент Шарпа = (Доходность – Безрисковая Доходность)/ Стандартное отклонение Доходности

Заметьте, что правая часть может быть выражена как в долларах, так и в процентах — при условии, что обе части равенства выражены в одних и тех же единицах. Несколько слов об отдельных терминах, которые лучше всего выражаются в годовом исчислении:

1. Доходность. Это та сумма, которую вы зарабатываете на активах.

2. Безрисковая Доходность. Это та сумма денег, которую вы можете ожидать заработать на активах, которые в экономическом анализе классифицируются как «безрисковые», на сумму капитала, эквивалентную той, с которой вы собираетесь выйти на тот рынок, где работаете. Во всех, за малым исключением, ситуациях соответствующей ставкой доходности здесь будет ставка по финансовым инструментам Казначейства США. При вычислении коэффициента Шарпа безрисковая доходность вычитается из общего дохода портфеля, чтобы обособить ту долю показателя, которая привязана к предположению о подверженности рыночным рискам. Одним из довольно изящных результатов здесь является то, что тот, кто берет капитал и инвестирует его в казначейские ценные бумаги, зарабатывает в точности безрисковую процентную ставку, и, следовательно, коэффициент Шарпа в этом случае становится равным нулю, а у тех портфелей, которые не могут принести даже такого скромного уровня доходности, коэффициент Шарпа будет отрицательным. Поэтому положительным коэффициент Шарпа становится только в том случае, когда достигнутые показатели выше минимальной ставки по государственным ценным бумагам — то есть, в принципе, предполагается, что эти показатели связаны с какой-то сопряженной с риском рыночной деятельностью, и тогда можно говорить о положительной доходности с поправкой на риск.

3. Стандартное отклонение Доходности. Этот наш с вами старый друг-приятель: мы-то думали, что разбили его в пух и прах, — ан нет; вот он, тут как тут, — восстал из пепла, чтобы поучаствовать в качестве компонента риска в вычислении доходности с поправкой на риск. Заметьте себе, что тут чрезвычайно важно выразить эту статистическую величину для соответствующего промежутка времени — в идеале, как уже было сказано выше, для одного года. Вследствие специфики этого расчета (когда эта цифра изменяется в непосредственной зависимости от квадратного корня от количества частных значений наблюдений), для этого необходимо или умножение, или деления квадратного корня из количества наблюдений. Например, предположим, что у вас есть ежедневные данные за год, которые определяют дневное стандартное отклонение, скажем, в $10,000, или в 1% (пусть сумма капитала равна $1 миллиону). Чтобы найти стандартное отклонение в годовом исчислении, надо умножить эту цифру на квадратный корень из количества операционных дней в году. Если зачеркнуть в календаре выходные и праздничные дни, получится примерно 250 плюс-минус один-два дня, и квадратный корень из этого числа будет равен примерно 15.9. Следовательно, если дневное стандартное отклонение равно $10,000, или 1%, то стандартное отклонение в годовом исчислении будет равно примерно $159,000, или 15.9%.

В формуле расчета коэффициента Шарпа такое нормирование по временным промежуткам необходимо производить для того, чтобы полученные результаты имели смысл. Заметьте, что эта формула допускает корректировку с учетом таких факторов, как то, что набор данных может быть неполным (например, данные за полгода), и то, что периоды времени не обязательно будут равняться одному дню. Однако в своих объяснениях этих загадочных явлений я буду полагаться на мнение своих друзей-профессионалов в области статистики.

К этому моменту вы уже, наверное, бросились вычислять свой коэффициент Шарпа, и вам интересно, следует ли вам стыдиться или, наоборот, гордиться тем результатом, который у вас получился. Следуя простому эмпирическому правилу, я думаю, что почти всегда надо стремиться к тому, чтобы коэффициент Шарпа, рассчитанный по вышеописанному методу, был больше или равен единице. Например, если предположить, что безрисковая процентная ставка равна 5%, а стандартное отклонение дохода в годовом исчислении составляет 15%, то, чтобы достичь этого порога, для такого портфеля нужно было бы, чтобы доходность была не менее 20%:

(Доходность 20% — безрисковая процентная ставка 5%) / стандартное отклонение доходности 15% = 1.0

Конечно, если коэффициент Шарпа меньше этой базовой величины, то все равно за длительные промежутки времени можно добиться довольно высоких финансовых целей; однако привлекательность таких доходов с точки зрения поправки на риск, естественно, снижается. В таких случаях поставщик капитала (будь то вы сами или какой-то другой экономический субъект), совершенно обоснованно придет к выводу, что его деньгам можно найти более интересное применение. Бывает другая крайность — я знаю случаи, когда коэффициент Шарпа некоторых портфелей достигал 5.0, 10.0 или даже больших значений на протяжении длительных периодов времени. Такие — довольно редкие — исключения могут быть свидетельством или необычайного рыночного подъема, или же того, что в вычислении стандартного отклонения не были в достаточной мере учтены какие-то риски; я бы советовал вам подходить к оценке подобных ситуаций с большой осторожностью.

Школа молодого бинарщика:  Как заработать на торговле бинарными опционами Базовые правила.

Все это подводит нас к последнему элементу нашего разговора о коэффициенте Шарпа — а именно, к его ограничениям. В значительной степени они зависят от точности вычисления стандартного отклонения как параметра, представляющего степень подверженности рискам, а также от возможности применения распределений исторической доходности и волатильности как средств прогнозирования будущих показателей. Как было показано выше, ограничения, связанные с вычислением стандартного отклонения, обусловлены предположением, что доходность портфеля имеет нормальное распределение, а так бывает не всегда. Кроме того, модели волатильности могут и не повторяться — в особенности в тех случаях, когда волатильность вычисляется за более короткие промежутки времени.

Чтобы проиллюстрировать тот тип проблем, которые могут быть связаны с этими ограничениями, рассмотрим портфель, в котором не происходит ничего, кроме продажи опционов с большим проигрышем, срок исполнения которых уже очень близок. Поскольку эти опционы окупаются при любых исходах, кроме самых маловероятных, то портфельные менеджеры, использующие такие стратегии, могут добиваться стабильной доходности при низкой волатильности на протяжении длительных периодов времени — зачастую годами. Однако соответствующий коэффициент Шарпа маскирует тот факт, что время от времени в результате каких-нибудь резких изменений на рынке этот портфель будет терпеть существенные убытки. Когда такое происходит, мы видим и ограничения а при расчете подверженности рискам, и риск, связанный с использованием исторической доходности как средства для предсказания будущих рисков.

По этим и по ряду других причин, хотя коэффициент Шарпа и остается одним из важных эталонов доходности с поправкой на риск, его лучше использовать в сочетании с аналитикой, которая для измерения рисков не полагается только на значение стандартного отклонения — например, на расчет Доходности за Период Максимальной Просадки Капитала (ROMAD).

Биография Уильяма Шарпа

Нобелевская премия по экономике 1990 года за вклад в теорию формирования цены финансовых активов

Американский экономист Уильям Ф. Шарп родился в Бостоне (штат Массачусетс). Его родители в то время заканчивали университет, отец — по специальности «английская литература», мать -в области естественных наук. Затем отец Ш. работал в Гарвардском университете. В 1940 г. в связи с его вступлением в национальную гвардию семья переехала в Техас, а затем в Калифорнию. Школьное образование Ш. получил в г. Риверсайд (штат Калифорния). В 1951 г. он записался на медицинский факультет Калифорнийского университета в Беркли, но спустя год убедился в том, что медицина не является его призванием. Он переехал в университетский городок в Лос-Анджелесе, избрав своей будущей специальностью управление бизнесом. В течение первого семестра Ш. изучал бухгалтерский учет и экономикс — оба курса были обязательны для получения диплома по этой специальности. Находя курс бухгалтерского учета скучным, Ш. сразу же увлекся микроэкономикой, что определило его дальнейшую профессиональную карьеру. Особенно сильное влияние на него оказали профессора университета Дж. Ф. Уэстон, преподававший финансы и привлекший в дальнейшем Ш. к работе с Г. Марковицем над темой, за которую оба в будущем получат Нобелевскую премию, и А. Алчиан, преподававший экономикс. В 1955 г. Ш, получил степень бакалавра по специальности «экономикс», а спустя год -магистерскую степень.

После непродолжительного пребывания на военной службе Ш. начал работать экономистом в РЭНД корпорейшн, где в те годы велись разработки в области теории игр, вычислительной техники, линейного и динамического программирования и прикладной экономики. Здесь началась совместная работа Ш. с Г. Марковицем над проблемой портфельных инвестиций и созданием модели, отражающей взаимосвязи ценных бумаг. Работая в корпорации, Ш. защитил в 1961 г. докторскую диссертацию в Калифорнийском университете в Лос-Анджелесе по «экономике трансфертных цен» (отпускные цены, действующие в расчетах между предприятиями одной фирмы). В диссертации он исследовал ряд аспектов анализа портфельных инвестиций, базирующегося на модели Г. Марковица. Ш. назвал ее моделью с одним коэффициентом, позднее она получила название однофакторной модели. Центральной идеей диссертации являлось положение о том, что доходы от ценных бумаг соотносятся друг с другом только благодаря воздействию одного общего фактора. В заключительной главе «Позитивная теория изменений рынка ценных бумаг» («A Positive Theory of Security Market Behavior») излагалась однофакторная модель, приближенная к сформулированной впоследствии Ш. ценовой модели акционерного капитала (Capital Asset Pricing Model — САРМ).

В 1961 г. Ш. перешел на преподавательскую работу в Школу бизнеса при Вашингтонском университете в г. Сиэтле. В течение восьми лет он преподавал там широкий круг предметов, в том числе микроэкономику, теорию финансов, вычислительную технику, статистику, исследование операций. В процессе преподавания Ш., по его собственным словам, углублял свои знания соответствующих разделов экономической теории. В 1963 г. в журнале «Наука управления» («Management Science») он впервые опубликовал изложение основных идей своей диссертационной работы в статье, озаглавленной «Упрощенная модель анализа портфельных инвестиции («А Simplified Model for Portfolio Analysis»). Одновременно он продолжил разработку ценовой модели, которая была намечена в диссертации. Как установил Ш., аналогичные анализу однофакторной модели результаты могут быть получены без учета количества факторов, влияющих на доходы от ценных бумаг. Свой новый вывод он обсудил в январе 1962 г. в Чикагском университете, а затем представил в статье «Цены акционерного капитала — теория рыночного равновесия в условиях риска» («Capital Asset Prices — A Theory of Market Equilibrium Under Conditions of Risk»), опубликованной в 1964 г.. В ней были изложены основы получившей широкую известность ценовой модеи акционерного капитала, которая являлась шагом в рыночном анализе формирования цен на финансовые активы. Аналогичные попытки дальнейшего развития модели Г. Марковица были предприняты в середине 60-х гг. Дж. Трейнором, Дж. Линтнером и др.

В основе разработанной Ш. модели лежало предположение, что индивидуальный владелец акций (инвестор) может предпочесть избежать риска путем комбинации заемного капитала и соответствующим образом подобранного (оптимального) портфеля рискованных ценных бумаг. В соответствии с моделью Ш. структура оптимального портфеля ценных бумаг, подверженных риску, зависит от оценки инвестором будущих перспектив различных видов ценных бумаг, а не от его собственного отношения к риску. Последний отражается только в выборе сочетания рискованных акций и инвестирования в безопасные с точки зрения риска ценные бумаги (например, казначейские векселя), либо в предпочтении займов. Для владельца акций, который не располагает специальной информацией по сравнению с другими акционерами, нет оснований держать свою долю в акционерном капитале фирмы в акциях, отличных от тех, которыми владеют другие акционеры. С помощью так называемого показателя «бета-стоимости» («beta-value») удельной доли каждого акционера в совокупном акционерном капитале компании Ш. показывает ее предельный вклад в риск всего рыночного портфеля рискованных ценных бумаг. Если бета-коэффициент больше 1, то такие доли имеют воздействие на риск всего портфеля бумаг выше среднего, а если бета-коэффициент меньше 1, то эффект влияния на риск всего портфеля акций ниже среднего. Согласно ценовой модели Ш., на эффективно действующих рынках капитала премия за риск и ожидаемый доход от ценной бумаги будут изменяться в прямой зависимости от величины бета-стоимости. Эти отношения связаны с формированием цены равновесия на эффективных рынках капитала.

Модель Ш. давала возможность определять с помощью бета-коэффициента доход, ожидаемый от ценной бумаги. Она показывала, что риск можно перенести на рынок капитала, где он может быть куплен, продан и оценен. Таким образом, цены рискованных ценных бумаг скорректированы так, что решения о портфельных инвестициях становятся последовательными (непротиворечивыми).

Модель Ш. рассматривается в качестве основы современной теории цен на финансовых рынках. Она широко использовалась в эмпирическом анализе, применялась в практических исследованиях и стала важным основанием в практике принятия решений в различных сферах экономической жизни, в первую очередь там, где премия за риск играет важную роль. Это касается расчетов стоимости капитала, связанных с принятием решений об инвестировании, слиянии компаний, а также в оценках стоимости капитала как основы ценообразования в сфере регулируемых коммунальных служб и пр.. Наряду с моделью портфельных инвестиций Г. Марковица ценовая модель Ш. вошла во все учебники по экономике финансов.

В 1968 г. Ш. перешел на работу в университетский городок Калифорнийского университета в Ирвине, чтобы принять участие в создании Школы социальных наук. По разным причинам это начинание не увенчалось успехом, и Ш. пригласили преподавать в Высшей школе бизнеса при Стэнфордском университете, куда он перешел в 1970 г. Незадолго до этого он издал книгу «Теория портфельных инвестиций и рынки капитала» («Portfolio Theory and Capital Markets», 1970), в которой изложил основные идеи своей теории финансовых рынков.

В 70-е гг. Ш. сосредоточил усилия на исследовании проблем, связанных с установлением равновесия на рынках капитала, а также его значения для выбора владельцем акций портфеля инвестиций. Затем, с середины 70-х гг., он обратился к изучению роли инвестиционной политики для фондов, связанных с пенсионным обеспечением. Написанный им в конце 70-х гг. учебник «Инвестиции» («Investments», 1978; 2-е изд. 1985; 3-е изд. 1990) обобщал разнообразный эмпирический и теоретический материал по данной теме. Сокращенный вариант книги под заголовком «Основы теории инвестиций» («Fundamentals of Investments») вышел в свет в 1989 г. При работе над учебником Щ. дополнил свою модель, введя в нее двухчленную процедуру выбора цен, которая давала практический инструментарий для оценки выбора при наличии нескольких вариантов. Эта модель широко используется на практике.

Наряду с преподавательской и исследовательской работой Ш. выполнял функции консультанта по инвестициям в ряде частных фирм, где он стремился внедрить в практику некоторые идеи своей теории финансов. Он участвовал в оценках надежности и риска портфельных инвестиций, выборе оптимального портфеля ценных бумаг, определении возможного притока наличности и пр.. Работа в фирмах «Мерилл Линч, Пирс и Смит» и «Уэллс-Фарго» обогатила Ш. реальными знаниями о практике инвестирования.

В 1976-1977 гг. Ш. был привлечен к работе организованной Национальным бюро экономических исследований (НБЭИ) группы по изучению вопросов, связанных с достаточностью банковского капитала для процесса инвестирования. Ш. занимался изучением связи между страхованием депозитов и риском неуплаты. Результаты его работы в комиссии были обобщены в пяти статьях в «Журнале финансового и количественного анализа» («Journal of Financial and Quantitative Analysis») в 1978 г.

В конце 70-х гг. Ш. разработал достаточно простой, но эффективный метод нахождения решений для целого ряда проблем анализа портфельных инвестиций, который получил широкое распространение, несмотря на то, что статья, описывающая механизм решения, -«Алгоритм для улучшения портфельных инвестиций» («An Algorithm for Portfolio Improvement») — оставалась неопубликованной до 1987 г.

Школа молодого бинарщика:  Grand Option отзывы

В 1980 г. Ш. был избран президентом Американской финансовой ассоциации. В своем докладе при вступлении на этот пост, озаглавленном «Управление децентрализованными инвестициями» («Decentralized Investment Management»), он сделал несколько предложений по анализу широко распространенной среди крупных учреждений-вкладчиков практики разделения фондов между менеджерами, профессионально занимающимися инвестициями.

В 80-е гг. Ш. продолжал заниматься вопросами политики планирования инвестиций пенсионных, страховых и пр. фондов. Его особенно интересовал процесс генерирования дохода на рынке обыкновенных акций. Результаты эмпирического изучения данного вопроса были изложены в статье «Некоторые факторы, влияющие на доход ценных бумаг на Нью-Йоркской бирже, 1931-1979 гг.» («Some Factors in New York Stock Exchange Security Returns, 1931-1979»).

Результаты своих исследований Ш. стремился реализовать в учебных курсах по подготовке специалистов по размещению финансовых активов. В 1983 г. он помог Стэнфордскому университету в разработке программы недельного семинара по управлению международными инвестициями, предназначенного для профессионалов высокого ранга, занимающихся инвестициями. В течение трех лет Ш. являлся одним из руководителей программы, в последующие годы продолжал вести занятия по этой программе. Он принял участие в создании аналогичной программы трехнедельного обучения для одной из японских школ бизнеса и преподавал в ней в течение пяти лет.

В 1986 г. Ш. временно покинул Стэнфордский университет, чтобы организовать собственную исследовательско-консультационную фирму «Шарп-Рассел-ризёрч», целью которой являлась разработка рекомендаций для страховых, пенсионных, благотворительных и пр. фондов и организаций по размещению ценных бумаг. Он был поддержан рядом американских пенсионных фондов, Компанией Франка Рассела, а также группой профессионалов. В 1989 г. Ш. окончательно расстался с преподавательской деятельностью, уйдя в отставку, чтобы отдавать все силы и время своей фирме, которая теперь носит название «Уильям Ф. Шарп ассошиэйтс». Он остается заслуженным профессором Стэнфордского университета и продолжает участвовать в его научной жизни.

В 70-80-е гг. Ш. сотрудничал со многими организациями и фондами, занятыми инвестиционной деятельностью. Он является попечителем исследовательского фонда и Совета по образованию и исследованиям Института финансовых аналитиков, членом комитета Института количественных исследований, а также консультантом отдела управления портфельными инвестициями Швейцарского банка. За свои заслуги в исследовании финансовой сферы и вклад в образование в сфере бизнеса Ш. отмечен наградами Американской ассамблеи школ бизнеса (1980) и Федерации аналитиков в области финансов (1989).

Премию памяти Альфреда Нобеля по экономике за 1990 г. Ш. получил вместе с Г. Марковицем и М. Миллером «за вклад в теорию формирования цены финансовых активов», воплотившуюся в так называемой ценовой модели акционерного капитала.

Ш. — отец двух дочерей, Деборы и Джонатан. В 1986 г. он женился повторно. Его жена Кэтрин — профессиональный художник, в настоящий момент является администратором семейной фирмы Ш. В свободное время Ш. увлекается плаванием, посещением оперы, футбольных и баскетбольных игр.

Расчёт коэффициента Шарпа, формула расчёта

Коэффициент Шарпа показывает соотношение доходности и риска, а именно измеряет избыточность доходности портфеля на единицу риска. Чем выше значение коэффициента, тем выше историческая доходность фонда на единицу риска. Коэффициент Шарпа оценивает степень близости эквити к экспоненте с постоянным ростом, или степень стабильности дохода. При стремлении кривой эквити к экспоненте, Шарп стремится к бесконечности. По-другому говоря, Шарп стремится к бесконечности при стремлении всех месячных доходностей к собственному среднему значению. Получается, что инвесторы, ориентирующиеся на коэффициент Шарпа, стремятся получать стабильный доход. Под стабильностью дохода в данном случае понимается постоянство прибыли.Если пытаться получить максимальный доход при заданном риске, т.е. торговать, используя оптимальную стратегию получения прибыли, то кривая эквити не будет иметь форму экспоненты с постоянной скоростью роста. Средняя скорость роста будет меняться, такова природа рынка – на нём невозможна стабильная доходность. Однако если искусственно ограничить доходность, то можно добиться постоянства скорости роста кривой эквити, и, соответственно, увеличить этим коэффициент Шарпа. Но такая мера приведет к уменьшению прибыли и фактора восстановления. Торговля в этом случае будет не оптимальной. Вывод: Шарп находит стабильную торговлю, но, вообще говоря, не оптимальную. У кого Шарп должен быть больше.Понятно, что самое большое значение Шарпа будет у тех, кто стремится максимизировать этот параметр. Тягаться с такими бесполезно, да и не нужно. Людей таких никогда не видел, и скорее всего их нет. Хотя кто-то предлагал использовать коэффициент Шарпа для оценки трейдеров в конкурсе Альпари. Вот тут бы мы и увидели таких людей.

Если бы предложение было принято, то результаты конкурса были бы довольно забавными. Однако интересно, если не применять никаких махинаций по повышению этого коэффициента, то у кого Шарп будет больше? Очевидно, у интрадейщиков, особенно у пипсовщиков, и у портфельных трейдеров. Чем меньше таймфрейм трейдера, тем стабильнее прибыль по месяцам. Поэтому интрадейщики имеют шансы получить относительно большое значение Шарпа. Касаемо портфельной торговли тоже всё ясно – диверсификация сглаживает доходность, сближая эквити с экспонентой. Труднее всего придется тем, кто торгует на одном инструменте и вдолгосрочку. У них Шарп будет близок к нулю, если только графики торгуемых инструментов не будут иметь большого Шарпа. На сайтах пишут, что Шарп говорит об эффективности инвестиций. И даже строят рейтинги фондов на основании этого коэффициента. На самом деле как раз об эффективности он ничего не говорит. Он говорит лишь о степени стабильности прибыли. Стабильность это не эффективность, не надо путать эти понятия. Сравнивая коэффициенты Шарпа разных фондов, можно увидеть у кого прибыль стабильнее. Если не обращать внимания на саму прибыль, то можно посчитать ПИФ с доходностью 12%, показанной за год с момента создания этого фонда, самым эффективным вложением денег. Отсюда вывод: если и использовать коэффициент Шарпа, то обязательно в совокупности с таким параметром, как годовая доходность. К слову, самый большой Шарп у банков. Если считать безрисковую ставку равной нулю, то у них он исчисляется тысячами – недостижимое число для трейдера. Банки прибегают к методу искусственного повышения этого коэффициента — они перераспределяют прибыль. Если прибыль превосходит фиксированный процент, то излишки они кладут себе в резерв.

Если прибыль не дотягивает до нужного процента, они дополняют её из резерва, обеспечивая этим стабильные выплаты. Примерно так. Как применять коэффициент ШарпаПростой случай: есть 2 фонда, оба имеют прибыль 100% в год, при этом у одного из них низкий Шарп, а у другого высокий. Можно сказать с уверенностью, что выгоднее, и уж точно психологически спокойнее, вложиться в фонд с наибольшим значением Шарпа.

В этом случае мы уже в первом месяце с большой вероятностью получим прибыль, в то время как в другом фонде, ввиду меньшей стабильности, прибыли в первое время может не быть, или может быть просадка, впрочем, как и очень большая прибыль за короткий срок. У фонда с большим значением Шарпа прибыль будет более равномерно распределена по временному отрезку. Возможно, у фонда с небольшим значением Шарпа, выгодно дождаться некоторой просадки счета или простоя. В то время как медлить с инвестированием в фонд с высоким Шарпом смысла нет – это будет с большой вероятностью способствовать потере возможной прибыли.Высокий Шарп одного из фондов может говорить о более лучшей диверсификации, что говорит о меньшем риске. Правда этот же Шарп может говорить об увлечении трейдеров пипсовкой. Как это связано с риском уже трудно оценить.

Три проблемы коэффициента Шарпа

Хотя коэффициент Шарпа — полезный способ измерений, но у него есть некоторое количество потенциальных недостатков

1. Измерение прибыли в коэффициенте Шарпа.

Это измерение — среднемесячная доходность (или доходность за другой интервал времени), выраженная в процентах годовых, — более приспособлено для оценки вероятной результативности в следующем месяце, чем для оценки результативности на протяжении всего года. Например, предположим, что управляющий в течение полугода получает 40% прибыли каждый месяц, а другие 6 месяцев приносят ему убытки в размере 30%. Вычисляя годовую прибыль, исходя из среднемесячной, мы получим 60% (12 х 5%). Однако если размер позиции корректируется в соответствии с существующими активами, а так поступает большинство управляющих, действительная прибыль за год составила бы -11%. Это произойдет, потому что из каждого доллара активов, имеющихся в начале периода, к концу периода осталось бы только $0,8858((1,40)6 х (0,70)6 = 0,8858).

Как показывает этот пример, если вы озабочены оценкой потенциальной доходности за расширенный период, а не лишь за следующий месяц или другой интервал, то измерение прибыли, используемое в коэффициенте Шарпа, может вести к огромным искажениям. Однако эту проблему можно обойти, используя среднее геометрическое (в противоположность арифметическому) при расчете средней месячной доходности, которую затем выражают в процентах годовых, чтобы получить числитель коэффициента Шарпа.

Здесь подразумевается, что торговые активы постоянны (прибыль изымается, а убытки восполняются). Другими словами, отсутствует реинвестирование прибыли и снижение величины инвестиций в случае убытков. Вообще говоря, хотя вычисление прибыли с учетом реинвестиций предпочтительно, это обстоятельство более чем компенсируется существенным преимуществом, состоящем в отсутствии необходимости оценивать требования к минимальной величине активов в случае торговой системы. Более того, система с более высокой прибылью, рассчитанной без учета реинвестиций, чаше всего будет демонстрировать и более высокую прибыль с их учетом.

Этот раздел адаптирован из статьи Дж. Швагера «Alternative to Sharpe Ratio Better Measure of Performance», Futures, p. 57-58, March 1985.

Средняя геометрическая доходность в процентах годовых в точности эквивалентна средней годовой доходности с учетом реинвестиций, которая обсуждается позже в этой главе в разделе, посвященном отношению прибыли к максимальному падению стоимости активов.

2. Коэффициент Шарпа не делает различий между колебаниями стоимости активов вверх и вниз. Коэффициент Шарпа

измеряет волатильность, а не риск. А это не обязательно одно и то же.

С точки зрения меры риска, используемой в коэффициенте Шарпа, т.е. стандартного отклонения доходности, колебания вверх и вниз рассматриваются как в равной степени плохие. Таким образом, коэффициент Шарпа показывал бы в невыгодном свете управляющего, у которого спорадически наблюдались бы резкие увеличения активов, даже если бы падения стоимости активов были малы.

3. Коэффициент Шарпа не делает различий между череду­ющимися и последовательными убытками. Мера риска в коэффициенте Шарпа (стандартное отклонение) не зависит от последовательности выигрышных и убыточных периодов.

Откройте счет и получите бонус:
Понравилась статья? Поделиться с друзьями:
Как правильно торговать бинарными опционами
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: